We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Immunology of osteoporosis: relevance of inflammatory targets for the development of novel interventions

    Syed Sufian Ahmad

    Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India

    ,
    Faraha Ahmed

    Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India

    ,
    Ruhi Ali

    Delhi Institute of Pharmaceutical Education & Research (DIPSAR), DPSRU, New Delhi, 110017, India

    ,
    Mohammed M Ghoneim

    Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, AdDiriyah, 13713, Saudi Arabia

    ,
    Sultan Alshehri

    Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia

    ,
    Abul Kalam Najmi

    Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India

    ,
    Sayeed Ahmad

    Department of Pharmacognosy & Phytochemistry, Bioactive Natural Product Laboratory, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India

    ,
    Mohammad Zaki Ahmad

    Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia

    ,
    Javed Ahmad

    *Author for correspondence: Tel.: +91 957 320 6296;

    E-mail Address: drm.ahmedkhan@jamiahamdard.ac.in

    Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia

    &
    Mohammad Ahmed Khan

    **Author for correspondence:

    E-mail Address: khan.ahmed1511@gmail.com

    Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India

    Published Online:https://doi.org/10.2217/imt-2021-0282

    Osteoporosis is recognized as low bone mass and deteriorated bone microarchitecture. It is the leading cause of fractures and consequent morbidity globally. The established pathophysiological evidence favors the endocrine factors for osteoporosis and the role of the immune system on the skeletal system has been recently identified. Due to the common developmental niche bone and immune system interactions have led to the emergence of osteoimmunology. Immune dysregulation can initiate inflammatory conditions that adversely affect bone integrity. The role of immune cells, such as T-lymphocytes subsets (Th17), cannot be neglected in the pathogenesis of osteoporosis. Local inflammation within the bone from any cause attracts immune cells that participate in the activation of osteoclasts. This work summarizes the present knowledge of osteoimmunology in reference to osteoporosis and identifies novel targets for immunotherapy of osteoporosis.

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Okamoto K, Nakashima T, Shinohara M et al. Osteoimmunology: the conceptual framework unifying the immune and skeletal systems. Physiol. Rev. 97(4), 1295–1349 (2017).
    • 2. Das S, Crockett JC. Osteoporosis - a current view of pharmacological prevention and treatment. Drug Des. Devel. Ther. 7, 435–448 (2013).
    • 3. Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet 377(9773), 1276–1287 (2011).
    • 4. Geusens P, Lems WF. Osteoimmunology and osteoporosis. Arthritis Res. Ther. 13(5), 1–16 (2011).
    • 5. Srivastava RK, Dar HY, Mishra PK. Immunoporosis: immunology of osteoporosis-role of T cells. Front. Immunol. 9, 657 (2018).
    • 6. McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7(6), 429–442 (2007).
    • 7. Weitzmann MN. The role of inflammatory cytokines, the RANKL/OPG axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis. Scientifica (Cairo) 2013, 1–29 (2013).
    • 8. Proff P, Römer P. The molecular mechanism behind bone remodelling: a review. Clin. Oral Investig. 13(4), 355–362 (2009).
    • 9. DW B, GA D. Bone biology and physiology: Part I. The fundamentals. Plast. Reconstr. Surg. 129(6), 1314–1320 (2012).
    • 10. Clarke BL, Khosla S. Physiology of bone loss. Radiol. Clin. North Am. 48(3), 483–495 (2010).
    • 11. Karsenty G, Kronenberg HM, Settembre C. Genetic control of bone formation. Annu. Rev. Cell Dev. Biol. 25, 629–648 (2009).
    • 12. Katsimbri P. The biology of normal bone remodelling. Eur. J. Cancer Care (Engl.) 26(6), (2017).
    • 13. Clarke B. Normal bone anatomy and physiology. Clin. J. Am. Soc. 3, 131–139 (2008).
    • 14. Rochefort G, Pallu S, Benhamou CL. Osteocyte: the unrecognized side of bone tissue. Osteoporos. Int. 21(9), 1457–1469 (2010).
    • 15. Ross FP, Teitelbaum SL. αvβ3 and macrophage colony-stimulating factor: partners in osteoclast biology. Immunol. Rev. 208, 88–105 (2005).
    • 16. Boyle W, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 423(6937), 337–342 (2003).
    • 17. Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res. Ther. 9(Suppl. 1), S1 (2007).
    • 18. Hofbauer LC, Lacey DL, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S. Interleukin-1β and tumor necrosis factor-α, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 25(3), 255–259 (1999).
    • 19. Hadjidakis DJ, Raptis AE, Sfakianakis M, Mylonakis A, Raptis SA. Bone mineral density of both genders in Type 1 diabetes according to bone composition. J. Diabetes Complications 20(5), 302–307 (2006).
    • 20. Mangashetti LS, Khapli SM, Wani MR. IL-4 inhibits bone-resorbing activity of mature osteoclasts by affecting NF-κB and Ca 2+ signaling. J. Immunol. 175(2), 917–925 (2005).
    • 21. Yun TJ, Chaudhary PM, Shu GL et al. OPG/FDCR-1, a TNF receptor family member, is expressed in lymphoid cells and is up-regulated by ligating CD40. J. Immunol. 161(11), 6113–6121 (1998).
    • 22. Wing K, Yamaguchi T, Sakaguchi S. Cell-autonomous and -non-autonomous roles of CTLA-4 in immune regulation. Trends Immunol. 32(9), 428–433 (2011).
    • 23. Murphy KM, Reiner SL. The lineage decisions of helper T cells. Nat. Rev. Immunol. 2(12), 933–944 (2002).
    • 24. Takayanagi H. Osteoimmunology and the effects of the immune system on bone. Nat. Rev. Rheumatol. 5(12), 667–676 (2009).
    • 25. Sims NA, Green JR, Glatt M et al. Targeting osteoclasts with zoledronic acid prevents bone destruction in collagen-induced arthritis. Arthritis Rheum. 50(7), 2338–2346 (2004).
    • 26. Sato K, Suematsu A, Okamoto K et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203(12), 2673–2682 (2006).
    • 27. Krause DS. Regulation of hematopoietic stem cell fate. Oncogene 21(21), 3262–3269 (2002).
    • 28. Boyce BF Xing L. The RANKL/RANK/OPG pathway. Curr. Osteoporos. Rep. 5(3), 98–104 (2007).
    • 29. Rubin J, Ackert-Bicknell CL, Zhu L et al. IGF-I regulates osteoprotegerin (OPG) and receptor activator of nuclear factor-κB ligand in vitro and OPG in vivo. J. Clin. Endocrinol. Metab. 87(9), 4273–4279 (2002).
    • 30. Bengtsson AK, Ryan EJ. Immune function of the decoy receptor osteoprotegerin. Crit. Rev. Immunol. 22(3), 15 (2002).
    • 31. Breuil V, Ticchioni M, Testa J et al. Immune changes in post-menopausal osteoporosis: the Immunos study. Osteoporos. Int. 21(5), 805–814 (2010).
    • 32. Andersen TL, Sondergaard TE, Skorzynska KE et al. A Physical mechanism for coupling bone resorption and formation in adult human bone. Am. J. Pathol. 174(1), 239–247 (2009).
    • 33. Hill PA. Bone remodelling. Br. J. Orthod. 25(2), 101–107 (1998).
    • 34. Bonewald LF. Osteocytes as dynamic multifunctional cells. Ann. NY Acad. Sci. 1116, 281–290 (2007).
    • 35. Ma Q, Ma Z, Liang M et al. The role of physical forces in osteoclastogenesis. J. Cell. Physiol. 234(8), 12498–12507 (2019).
    • 36. Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J. Biol. Chem. 285(33), 25103–25108 (2010). • Specifically discusses the immunological aspect of bone remodeling.
    • 37. Heino TJ, Hentunen TA, Väänänen HK. Osteocytes inhibit osteoclastic bone resorption through transforming growth factor-β: enhancement by estrogen. J. Cell. Biochem. 85(1), 185–197 (2002).
    • 38. Juppner H, Abou-Samra A, Freeman M et al. A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science 254(5034), 1024–1026 (1991).
    • 39. Swarthout JT, D'Alonzo RC, Selvamurugan N, Partridge NC. Parathyroid hormone-dependent signaling pathways regulating genes in bone cells. Gene 282(1–2), 1–17 (2002).
    • 40. Li X, Qin L, Bergenstock M, Bevelock LM, Novack DV, Partridge NC. Parathyroid hormone stimulates osteoblastic expression of MCP-1 to recruit and increase the fusion of pre/osteoclasts. J. Biol. Chem. 282(45), 33098–33106 (2007).
    • 41. Canalis E. Management of endocrine disease: novel anabolic treatments for osteoporosis. Eur. J. Endocrinol. 178(2), R33–R44 (2018).
    • 42. Everts V, Delaissé JM, Korper W et al. The bone lining cell: its role in cleaning Howship's lacunae and initiating bone formation. J. Bone Miner. Res. 17(1), 77–90 (2002).
    • 43. Heinemann DEH, Siggelkow H, Ponce LM, Viereck V, Wiese KG, Peters JH. Alkaline phosphatase expression during monocyte differentiation overlapping markers as a link between monocytic cells, dendritic cells, osteoclasts and osteoblasts. Immunobiology 202(1), 68–81 (2000).
    • 44. Takahashi F, Takahashi K, Shimizu K et al. Osteopontin is strongly expressed by alveolar macrophages in the lungs of acute respiratory distress syndrome. Lung 182(3), 173–185 (2004).
    • 45. Newby AC. Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability. Arterioscler. Thromb. Vasc. Biol. 28(12), 2108–2114 (2008).
    • 46. Pederson L, Ruan M, Westendorf JJ, Khosla S, Oursler MJ. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc. Natl Acad. Sci. USA 105(52), 20764–20769 (2008).
    • 47. Zhao C, Irie N, Takada Y et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab. 4(2), 111–121 (2006).
    • 48. van Bezooijen RL, Roelen BAJ, Visser A et al. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J. Exp. Med. 199(6), 805–814 (2004).
    • 49. Sun L, Blair HC, Peng Y et al. Calcineurin regulates bone formation by the osteoblast. Proc. Natl Acad. Sci. USA 102(47), 17130–17135 (2005).
    • 50. Robling AG, Niziolek PJ, Baldridge LA et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of sost/sclerostin. J. Biol. Chem. 283(9), 5866–5875 (2008).
    • 51. Takayanagi H. Mechanistic insight into osteoclast differentiation in osteoimmunology. J. Mol. Med. 83(3), 170–179 (2005).
    • 52. Walsh MC, Kim N, Kadono Y et al. Osteoimmunology: interplay between the immune system and bone metabolism. Annu. Rev. Immunol. 24, 33–63 (2006).
    • 53. Yeo L, Toellner KM, Salmon M et al. Cytokine mRNA profiling identifies B cells as a major source of RANKL in rheumatoid arthritis. Ann. Rheum. Dis. 70(11), 2022–2028 (2011).
    • 54. Troen BR. Molecular mechanisms underlying osteoclast formation and activation. Exp. Gerontol. 38(6), 605–614 (2003).
    • 55. Katagiri T, Takahashi N. Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis. 8(3), 147–159 (2002).
    • 56. Takahashi N, Udagawa N, Suda T. A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem. Biophys. Res. Commun. 256(3), 449–455 (1999).
    • 57. Sirufo MM, Suppa M, Ginaldi L, De Martinis M. Does allergy break bones? Osteoporosis and its connection to allergy. Int. J. Mol. Sci. 21(3), 712 (2020).
    • 58. Ross B, Krapp S, Augustin M et al. Structures and mechanism of dipeptidyl peptidases 8 and 9, important players in cellular homeostasis and cancer. Proc. Natl Acad. Sci. USA 115(7), E1437–E1445 (2018).
    • 59. Roy B. Biomolecular basis of the role of diabetes mellitus in osteoporosis and bone fractures. World J. Diabetes 4(4), 101 (2013).
    • 60. Miura M, Tanaka K, Komatsu Y et al. A novel interaction between thyroid hormones and 1,25(OH)2D3 in osteoclast formation. Biochem. Biophys. Res. Commun. 291(4), 987–994 (2002).
    • 61. Lee SK, Lorenzo JA. Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures: correlation with osteoclast-like cell formation. Endocrinology 140(8), 3552–3561 (1999).
    • 62. Chung H, Kang YS, Hwang CS et al. Deflazacort increases osteoclast formation in mouse bone marrow culture and the ratio of RANKL/OPG mRNA expression in marrow stromal cells. J. Korean Med. Sci. 16(6), 769–773 (2001).
    • 63. Kikuchi T, Matsuguchi T, Tsuboi N et al. Gene expression of osteoclast differentiation factor is induced by lipopolysaccharide in mouse osteoblasts via toll-like receptors. J. Immunol. 166(5), 3574–3579 (2001).
    • 64. Deyama Y, Kikuiri T, Ohnishi GI et al. Histamine stimulates production of osteoclast differentiation factor/receptor activator of nuclear factor-κB ligand by osteoblasts. Biochem. Biophys. Res. Commun. 298(2), 240–246 (2002).
    • 65. Chikazu D, Katagiri M, Ogasawara T et al. Regulation of osteoclast differentiation by fibroblast growth factor 2: stimulation of receptor activator of nuclear factor κB ligand/osteoclast differentiation factor expression in osteoblasts and inhibition of macrophage colony-stimulating factor functi. J. Bone Miner. Res. 16(11), 2074–2081 (2001).
    • 66. Takai H, Kanematsu M, Yano K et al. Transforming growth factor-β stimulates the production of osteoprotegerin/osteoclastogenesis inhibitory factor by bone marrow stromal cells. J. Biol. Chem. 273(42), 27091–27096 (1998).
    • 67. Kim JH, Kim N. Regulation of NFATc1 in osteoclast differentiation. J. Bone Metab. 21, 233–241 (2014).
    • 68. Timlin M, Toomey D, Condron C. Fracture hematoma is a potent proinflammatory mediator of neutrophil function background: patients with multiple. J. Trauma Inj. Infect. Crit. Care 58(6), 1223–1229 (2005).
    • 69. Ponzetti M, Rucci N. Updates on osteoimmunology: what's new on the cross-talk between bone and immune system. Front. Endocrinol. (Lausanne) 10, 1–13 (2019).
    • 70. De Matos CT, Berg L, Michaëlsson J, Felländer-Tsai L, Kärre K, Söderström K. Activating and inhibitory receptors on synovial fluid natural killer cells of arthritis patients: role of CD94/NKG2A in control of cytokine secretion. Immunology 122(2), 291–301 (2007).
    • 71. Mortaz E, Alipoor SD, Adcock IM, Mumby S, Koenderman L. Update on neutrophil function in severe inflammation. Front. Immunol. 9, 2171 (2018).
    • 72. Pietschmann P, Mechtcheriakova D, Meshcheryakova A, Föger-Samwald U, Ellinger I. Immunology of osteoporosis: a mini-review. Gerontology 62(2), 128–137 (2016).
    • 73. Park SH, Silva M, Bahk WJ, McKellop H, Lieberman JR. Effect of repeated irrigation and debridement on fracture healing in an animal model. J. Orthop. Res. 20(6), 1197–1204 (2002).
    • 74. Hajishengallis G, Moutsopoulos NM, Hajishengallis E, Chavakis T. Immune and regulatory functions of neutrophils in inflammatory bone loss. Semin. Immunol. 28(2), 146–158 (2016).
    • 75. Katayama M, Ohmura K, Yukawa N et al. Neutrophils are essential as a source of Il-17 in the effector phase of arthritis. PLoS One 8(5), 62231 (2013).
    • 76. Srivastava RK, Schmidt-Bleek K, Chattopadhyay N, De Martinis M, Mishra PK. Editorial: recent advances in basic and translational osteoimmunology. Front. Immunol. 12, 800508 (2021).
    • 77. Srivastava RK, Sapra L. The rising era of ‘immunoporosis’: role of immune system in the pathophysiology of osteoporosis. J. Inflamm. Res. 5(15), 1667–1698 (2022).
    • 78. Murdaca G, Greco M, Tonacci A et al. Il-33/il-31 axis in immune-mediated and allergic diseases. Int. J. Mol. Sci. 20(23), 5856 (2019).
    • 79. Brandt EB, Sivaprasad U. Th2 cytokines and atopic dermatitis. J. Clin. Cell. Immunol. 2(3), 110 (2011).
    • 80. Zupan J, Jeras M, Marc J. Osteoimmunology and the influence of pro-inflammatory cytokines on osteoclasts. Biochem Med (Zagreb) 23(1), 43–63 (2013).
    • 81. Renke J, Kędzierska-Mieszkowska S, Lange M et al. Mast cells in mastocytosis and allergy – important player in metabolic and immunological homeostasis. Adv. Med. Sci. 64(1), 124–130 (2019).
    • 82. Ferencz V, Meszaros S, Csupor E et al. Increased bone fracture prevalence in postmenopausal women suffering from pollen-allergy. Osteoporos. Int. 17(3), 484–491 (2006).
    • 83. Garla VV, Chaudhary KUQ, Yaqub A. Systemic mastocytosis: a rare cause of osteoporosis. Pan Afr. Med. J. 32, 169 (2019).
    • 84. Rossini M, Zanotti R, Orsolini G et al. Prevalence, pathogenesis, and treatment options for mastocytosis-related osteoporosis. Osteoporos. Int. 27(8), 2411–2421 (2016).
    • 85. Naito A, Azuma S, Tanaka S et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 4(6), 353–362 (1999).
    • 86. Föger-Samwald U, Dovjak P, Azizi-Semrad U, Kerschan-Schindl K, Pietschmann P. Osteoporosis: pathophysiology and therapeutic options. EXCLI J. 19, 1017–1037 (2020).
    • 87. Ferbebouh M, Vallières F, Benderdour M, Fernandes J. The pathophysiology of immunoporosis: innovative therapeutic targets. Inflamm. Res. 70(8), 859–875 (2021).
    • 88. Michalski MN, McCauley LK. Macrophages and skeletal health. Pharmacol. Ther. 174, 43–54 (2017).
    • 89. Li Y, Ling J, Jiang Q. Inflammasomes in alveolar bone loss. Front. Immunol. 12, 2130 (2021).
    • 90. Li Y, Toraldo G, Li A et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109(9), 3839–3848 (2007).
    • 91. Onal M, Xiong J, Chen X et al. Receptor activator of nuclear factor κB ligand (RANKL) protein expression by B lymphocytes contributes to ovariectomy-induced bone loss. J. Biol. Chem. 287(35), 29851–29860 (2012).
    • 92. D'Amelio P, Grimaldi A, Di Bella S et al. Estrogen deficiency increases osteoclastogenesis up-regulating T cells activity: a key mechanism in osteoporosis. Bone 43(1), 92–100 (2008).
    • 93. Saxena Y, Routh S, Mukhopadhaya A. Immunoporosis: role of innate immune cells in osteoporosis. Front. Immunol. 12, 687037 (2021).
    • 94. Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology 154(1), 3–20 (2018).
    • 95. Legge KL, Gregg RK, Maldonado-Lopez R et al. On the role of dendritic cells in peripheral T cell tolerance and modulation of autoimmunity. J. Exp. Med. 196(2), 217–227 (2002).
    • 96. Thomas R, MacDonald KPA, Pettit AR, Cavanagh LL, Padmanabha J, Zehntner S. Dendritic cells and the pathogenesis of rheumatoid arthritis. J. Leukoc. Biol. 66(2), 286–292 (1999).
    • 97. Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature 449(7161), 419–426 (2007).
    • 98. Izawa T, Ishimaru N, Moriyama K, Kohashi M, Arakaki R, Hayashi Y. Crosstalk between RANKLand Fas signaling in dendritic cells controls immune tolerance. Blood 110(1), 242–250 (2007).
    • 99. Walsh MC, Choi Y. Biology of the RANKL-RANK-OPG system in immunity, bone, and beyond. Front. Immunol. 5, 511 (2014).
    • 100. Ott C, Jacobs K, Haucke E, Navarrete Santos A, Grune T, Simm A. Role of advanced glycation end products in cellular signaling. Redox Biol. 2(1), 411–429 (2014).
    • 101. Vikulina T, Fan X, Yamaguchi M et al. Alterations in the immuno-skeletal interface drive bone destruction in HIV-1 transgenic rats. Proc. Natl Acad. Sci. USA 107(31), 13848–13853 (2010).
    • 102. Zhao E, Xu H, Wang L et al. Bone marrow and the control of immunity. Cell. Mol. Immunol. 9(1), 11–19 (2012).
    • 103. Kung YY, Felge U, Sarosi I et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402(6759), 304–309 (1999).
    • 104. Dar HY, Singh A, Shukla P et al. High dietary salt intake correlates with modulated Th17-Treg cell balance resulting in enhanced bone loss and impaired bone-microarchitecture in male mice. Sci. Rep. 8(1), 2503 (2018).
    • 105. Huber S, Gagliani N, O'Connor W, Geginat J, Caprioli F. CD4+ T helper cell plasticity in infection, inflammation, and autoimmunity. Mediators Inflamm. 2017, 7083153 (2017).
    • 106. Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 74(1), 5–17 (2015).
    • 107. Palmqvist P, Lundberg P, Persson E et al. Inhibition of hormone and cytokine-stimulated osteoclastogenesis and bone resorption by interleukin-4 and interleukin-13 is associated with increased osteoprotegerin and decreased RANKL and RANK in a STAT6-dependent pathway. J. Biol. Chem. 281(5), 2414–2429 (2006).
    • 108. Pacifici R. T cells: critical bone regulators in health and disease. Bone 47(3), 461–471 (2010).
    • 109. Schmitt E, Klein M, Bopp T. Th9 cells new players in adaptive immunity. Trends Immunol. 35(2), 61–68 (2014).
    • 110. Locksley RM. Nine lives: plasticity among T helper cell subsets. J. Exp. Med. 206(8), 1643–1646 (2009).
    • 111. Dar HY, Azam Z, Anupam R, Mondal RK, Srivastava RK. Osteoimmunology: the nexus between bone and immune system. Front. Biosci. (Landmark Ed.) 23(3), 464–492 (2018).
    • 112. Ciucci T, Ibáñez L, Boucoiran A et al. Bone marrow Th17 TNFα cells induce osteoclast differentiation, and link bone destruction to IBD. Gut 64(7), 1072–1081 (2015).
    • 113. Adamopoulos IE, Chao C chi, Geissler R et al. Interleukin-17A upregulates receptor activator of NF-κB on osteoclast precursors. Arthritis Res. Ther. 12(1), R29 (2010).
    • 114. Yu M, Cavero V, Lu Q, Li H. Follicular helper T cells in rheumatoid arthritis. Clin. Rheumatol. 34(9), 1489–1493 (2015).
    • 115. Cooley S, Parham P, Miller JS. Strategies to activate NK cells to prevent relapse and induce remission following hematopoietic stem cell transplantation. Blood 131(10), 1053–1062 (2018).
    • 116. Fujii SI, Shimizu K, Smith C, Bonifaz L, Steinman RM. Activation of natural killer T cells by α galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J. Exp. Med. 198(2), 267–279 (2003).
    • 117. Tilkeridis K, Kiziridis G, Ververidis AB et al. Immunoporosis: a new role for invariant natural killer T (NKT) cells through overexpression of nuclear factor-kB ligand (RANKL). Med. Sci. Monit. 2151–2158 (2019).
    • 118. Shashkova EV, Trivedi J, Cline-Smith AB et al. Osteoclast-primed Foxp3 + CD8 T cells induce T-bet, eomesodermin, and IFN-γ to regulate bone resorption. J. Immunol. 197(3), 726–735 (2016).
    • 119. Murad MH, Drake MT, Mullan RJ et al. Clinical review. Comparative effectiveness of drug treatments to prevent fragility fractures: a systematic review and network meta-analysis. J. Clin. Endocrinol. Metab. 97(6), 1871–1880 (2012).
    • 120. Black DM, Delmas PD, Eastell R et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N. Engl. J. Med. 356(18), 1809–1822 (2007).
    • 121. Cummings SR, San Martin J, McClung MR et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 361(8), 756–765 (2009).
    • 122. Tella SH, Gallagher JC. Prevention and treatment of postmenopausal osteoporosis. J. Steroid Biochem. Mol. Biol. 142, 155–170 (2014).
    • 123. Deeks ED. Denosumab: a review in postmenopausal osteoporosis. Drugs Aging 35(2), 163–173 (2018).
    • 124. Cosman F, Crittenden DB, Ferrari S et al. FRAME Study: the foundation effect of building bone with 1 year of romosozumab leads to continued lower fracture risk after transition to denosumab. J. Bone Miner. Res. 33(7), 1219–1226 (2018).
    • 125. Tian A, Jia H, Zhu S et al. Romosozumab versus teriparatide for the treatment of postmenopausal osteoporosis: a systematic review and meta-analysis through a grade analysis of evidence. Orthop. Surg. 13(7), 1941–1950 (2021).
    • 126. Geusens P, Feldman R, Oates M et al. Romosozumab reduces incidence of new vertebral fractures across severity grades among postmenopausal women with osteoporosis. Bone 154, 116209 (2022).
    • 127. Saag KG, Petersen J, Brandi ML et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N. Engl. J. Med. 377(15), 1417–1427 (2017).
    • 128. MacNabb C, Patton D, Hayes JS. Sclerostin antibody therapy for the treatment of osteoporosis: clinical prospects and challenges. J. Osteoporos. 2016, 6217286 (2016).
    • 129. Padhi D, Jang G, Stouch B, Fang L, Posvar E. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J. Bone Miner. Res. 26(1), 19–26 (2011).
    • 130. Recknor CP, Recker RR, Benson CT et al. The effect of discontinuing treatment with blosozumab: follow-up results of a phase 2 randomized clinical trial in postmenopausal women with low bone mineral density. J. Bone Miner. Res. 30(9), 1717–1725 (2015).
    • 131. Reid IR. Targeting sclerostin in postmenopausal osteoporosis: focus on romosozumab and blosozumab. BioDrugs 31(4), 289–297 (2017).
    • 132. Glorieux FH, Devogelaer JP, Durigova M et al. BPS804 anti-sclerostin antibody in adults with moderate osteogenesis imperfecta: results of a randomized phase 2a trial. J. Bone Miner. Res. 32(7), 1496–1504 (2017).
    • 133. Lewiecki EM. Role of sclerostin in bone and cartilage and its potential as a therapeutic target in bone diseases. Ther. Adv. Musculoskelet. Dis. 6(2), 48–57 (2014).
    • 134. Novartis. Novartis Clinical Innovations Pipeline Annual Report (2014). https://prod.arctic.novartis.com/sites/novartis_com/files/novartis-annual-report-2014-en.pdf
    • 135. Fulciniti M, Tassone P, Hideshima T et al. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood 114(2), 371–379 (2009).
    • 136. Goldhahn J, Féron JM, Kanis J et al. Implications for fracture healing of current and new osteoporosis treatments: an ESCEO consensus paper. Calcif. Tissue Int. 90(5), 343–353 (2012).
    • 137. Iyer SP, Beck JT, Stewart AK et al. A Phase IB multicentre dose-determination study of BHQ880 in combination with anti-myeloma therapy and zoledronic acid in patients with relapsed or refractory multiple myeloma and prior skeletal-related events. Br. J. Haematol. 167(3), 366–375 (2014).
    • 138. Boumpas DT, Furie R, Manzi S et al. A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum. 48(3), 719–727 (2003).
    • 139. Murata K, Nose M, Ndhlovu LC, Sato T, Sugamura K, Ishii N. Constitutive OX40/OX40 ligand interaction induces autoimmune-like diseases. J. Immunol. 169(8), 4628–4636 (2002).
    • 140. Croft M. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat. Rev. Immunol. 3(8), 609–620 (2003).
    • 141. Lippuner K. The future of osteoporosis treatment - a research update. Swiss Med. Wkly 142, w13624 (2012).
    • 142. Hsu YH, Chen WY, Chan CH, Wu CH, Sun ZJ, Chang MS. Anti-IL-20 monoclonal antibody inhibits the differentiation of osteoclasts and protects against osteoporotic bone loss. J. Exp. Med. 208(9), 1849–1861 (2011).
    • 143. Hsu YH, Chiu YS, Chen WY et al. Anti-IL-20 monoclonal antibody promotes bone fracture healing through regulating IL-20-mediated osteoblastogenesis. Sci. Rep. 6, 24339 (2016).
    • 144. Gauthier JY, Chauret N, Cromlish W et al. The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg. Med. Chem. Lett. 18(3), 923–928 (2008).
    • 145. McClung MR, O'Donoghue ML, Papapoulos SE et al. Odanacatib for the treatment of postmenopausal osteoporosis: results of the LOFT multicentre, randomised, double-blind, placebo-controlled trial and LOFT Extension study. Lancet Diabetes Endocrinol. 7(12), 899–911 (2019).